

Diffractive Optical Elements (DOE): Beam Splitter & Shaper — Modifying lasers through diffraction

Introduction

DOE technologies are emerging in the optics industry. Its applications range from technical optics such as scanning and metrology, to bioimaging and printing. DOE are added to laser systems to control the incident beam's phase and amplitude, to 'shape' the beam to a desired output pattern with distinctive functionality. It uses a surface complex microstructure to direct photons for the specific function.

Operation Principle

A **DOE beam splitter** is used to split a collimated incident beam into multiple beams. The power is shared between the resultant beams. These beams, form a 1xN array (1-dimension) or MxN array (2-dimension) depending on the setup. Resultant beams exit the beam splitter with separation angle θ (Figure 1). For odd number of beams (N), there is a desired beam that falls on the 0-order. For even number of beams, there is no beam on the 0-order. To achieve well-defined spots at the desired working distance, focusing lenses are often used, as seen in Figure 1 and 2.

Working Area

Figure 1. 1x3 Array Beam Splitter

Working Area

Figure 2. 1x4 Array Beam Splitter

Series Module	DOE-355-1x3	DOE-355-1X4
Wavelength*	355nm	
Beam Mode	SM or MM	
Number of Spots*	1x3	1x4

Table 1. Specifications of Beam Splitter

*DOE can be customised to a preferred wavelength, spot size, focal length, and divergent angle of beam.

(65) 6564 9624

A **DOE beam shaper** setup typically consist of a laser, a DOE beam shaper, a scan system/lens, and the working surface (Figure 3). The beam shaper DOE distributes the energy of a Gaussian beam spot to a Top-Hat profile with uniform intensity. This ensures an even laser irradiation on the working surface. The top-hat profile, is identified by a sharp transition area that generates a clear boundary between treated and untreated regions. The output profile can either be rectangular or circular, (Figure 4).

Figure 4. Output profile (rectangular/circular) after beam shaping

Series Module	DOE-9.4-150x200	DOE-SCAN-1064-163
Beam Mode	SM TEM ₀₀ with $M^2 < 1.5$	
Element Type	Window	
Shape	Rectangular	Circular

Table 2. Specifications of Beam Shaper

Applications

Being able to modify and isolate the resultant beam has proved useful in uses such as scanning the surface of skin or implementing perforation on cigarette filters. The systems could be used in, but not limited to the following application scenarios:

- Laser DisplayLaser Scribing
 - Laser WeldingFibre Optics
- Laser Applications for Medical Purposes

Conclusion

As a global enterprise, leading photonics innovation since 2002, WOE has built up customization engineering capability for thermal imaging, inspection and measurement systems.

www.wavelength-oe.com

ណ

0

Block 2 Bukit Batok St.24 #06-09 Skytech Building Singapore 659480

info@wavelength-tech.com